References
All of our product research is backed by science.
Our number one priority is to make supplements of the best quality possible, providing the right nutrients for your brain.
All references used during study, research and production of Brainrescue are summed up here.
Neuroinflammation general
1. da Fonseca, A. C. C., Matias, D., Garcia, C., Amaral, R., Geraldo, L. H., Freitas, C., & Lima, F. R. S. (2014). The impact of microglial activation on blood-brain barrier in brain diseases. Frontiers in cellular neuroscience, 8, 362.https://www.frontiersin.org/articles/10.3389/fncel.2014.00362
2. Madore, C., Leyrolle, Q., Lacabanne, C., Benmamar-Badel, A., Joffre, C., Nadjar, A., & Layé, S. (2016). Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural plasticity, 2016.https://www.hindawi.com/journals/np/2016/3597209/abs/
5. Hickman, S., Izzy, S., Sen, P., Morsett, L., & El Khoury, J. (2018). Microglia in neurodegeneration. Nature neuroscience, 21(10), 1359-1369.https://www.nature.com/articles/s41593-018-0242-x
7. Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K., & Tremblay, M. È. (2017). Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. The Journal of physiology, 595(6), 1929-1945.https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP272134@10.1002/(ISSN)1469-7793.Experimental-Biology-2018
10. Liang, Z., Zhao, Y., Ruan, L., Zhu, L., Jin, K., Zhuge, Q., ... & Zhao, Y. (2017). Impact of aging immune system on neurodegeneration and potential immunotherapies. Progress in Neurobiology, 157, 2-28. https://www.sciencedirect.com/science/article/pii/S0301008215300484
14. Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 179, 223-244. https://www.sciencedirect.com/science/article/pii/S193152441630264X
16. Perrine, K., Helcer, J., Tsiouris, A. J., Pisapia, D. J., & Stieg, P. (2017). The current status of research on chronic traumatic encephalopathy. World Neurosurgery, 102, 533-544.https://www.sciencedirect.com/science/article/pii/S1878875017302577
19. Calabrese, V., Santoro, A., Monti, D., Crupi, R., Di Paola, R., Latteri, S., ... & Franceschi, C. (2018). Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biology and Medicine, 115, 80-91.https://www.sciencedirect.com/science/article/pii/S0891584917311620
Clinical severity of neuroinflammation
2. Schwab, J. M., Zhang, Y., Kopp, M. A., Brommer, B., & Popovich, P. G. (2014). The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental neurology, 258, 121-129. https://www.sciencedirect.com/science/article/pii/S0014488614001253
3. Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B., & El Khoury, J. (2017). Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron, 95(6), 1246-1265.https://www.sciencedirect.com/science/article/pii/S0896627317306128
4. Guerrero-García, J. D. J., Carrera-Quintanar, L., López-Roa, R. I., Márquez-Aguirre, A. L., Rojas-Mayorquín, A. E., & Ortuño-Sahagún, D. (2016). Multiple sclerosis and obesity: possible roles of adipokines. Mediators of inflammation, 2016. https://www.hindawi.com/journals/mi/2016/4036232/abs/
5. Li, J. W., Zong, Y., Cao, X. P., Tan, L., & Tan, L. (2018). Microglial priming in Alzheimer’s disease. Annals of translational medicine, 6(10).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994530/
7. Hoeijmakers, L., Heinen, Y., Van Dam, A. M., Lucassen, P. J., & Korosi, A. (2016). Microglial priming and Alzheimer’s disease: a possible role for (early) immune challenges and epigenetics?. Frontiers in human neuroscience, 10, 398. https://www.frontiersin.org/articles/10.3389/fnhum.2016.00398/full
12. Henriques, J. F., Portugal, C. C., Canedo, T., Relvas, J. B., Summavielle, T., & Socodato, R. (2018). Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicology letters, 283, 21-31.https://www.sciencedirect.com/science/article/pii/S0378427417314509
13. Perry, V. H., & Teeling, J. (2013, September). Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. In Seminars in immunopathology (Vol. 35, No. 5, pp. 601-612). Springer Berlin Heidelberg.https://link.springer.com/article/10.1007/s00281-013-0382-8
14. Perry, V. H., & Teeling, J. (2013, September). Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. In Seminars in immunopathology (Vol. 35, No. 5, pp. 601-612). Springer Berlin Heidelberg. https://link.springer.com/article/10.1007/s00281-013-0382-8
17. Fumagalli, S., Perego, C., Pischiutta, F., Zanier, E. R., & De Simoni, M. G. (2015). The ischemic environment drives microglia and macrophage function. Frontiers in neurology, 6, 81.https://www.frontiersin.org/articles/10.3389/fneur.2015.00081/full
18. Sapin, E., Peyron, C., Roche, F., Gay, N., Carcenac, C., Savasta, M., ... & Dematteis, M. (2015). Chronic intermittent hypoxia induces chronic low-grade neuroinflammation in the dorsal hippocampus of mice. Sleep, 38(10), 1537-1546. https://academic.oup.com/sleep/article-abstract/38/10/1537/2468595
28. Maccioni, R. B., González, A., Andrade, V., Cortés, N., Tapia, J. P., & Guzmán-Martínez, L. (2018). Alzheimer s disease in the perspective of neuroimmunology. The open neurology journal, 12, 50.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040210/
30. Makinde, H. M., Just, T. B., Cuda, C. M., Perlman, H., & Schwulst, S. J. (2017). The role of microglia in the etiology and evolution of chronic traumatic encephalopathy. Shock (Augusta, Ga.), 48(3), 276. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5555778/
32. Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B., & El Khoury, J. (2017). Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron, 95(6), 1246-1265. https://www.sciencedirect.com/science/article/pii/S0896627317306128
33. Muccigrosso, M. M., Ford, J., Benner, B., Moussa, D., Burnsides, C., Fenn, A. M., ... & Godbout, J. P. (2016). Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain, behavior, and immunity, 54, 95-109.https://www.sciencedirect.com/science/article/pii/S0889159116300083
35. Calcia, M. A., Bonsall, D. R., Bloomfield, P. S., Selvaraj, S., Barichello, T., & Howes, O. D. (2016). Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 233(9), 1637-1650.https://link.springer.com/content/pdf/10.1007/s00213-016-4218-9.pdf
37. Asken, B. M., Sullan, M. J., DeKosky, S. T., Jaffee, M. S., & Bauer, R. M. (2017). Research gaps and controversies in chronic traumatic encephalopathy: a review. JAMA neurology, 74(10), 1255-1262.https://jamanetwork.com/journals/jamaneurology/article-abstract/2654232
Lifestyle and dietary approach to Neuroinflammation
3. Calcia, M. A., Bonsall, D. R., Bloomfield, P. S., Selvaraj, S., Barichello, T., & Howes, O. D. (2016). Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 233(9), 1637-1650.https://link.springer.com/content/pdf/10.1007/s00213-016-4218-9.pdf
4. Bellesi, M., de Vivo, L., Chini, M., Gilli, F., Tononi, G., & Cirelli, C. (2017). Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. Journal of Neuroscience, 37(21), 5263-5273.https://www.jneurosci.org/content/37/21/5263?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JNeurosci_TrendMD_1
5. Bernier, M., Wahl, D., Ali, A., Allard, J., Faulkner, S., Wnorowski, A., ... & Tarantini, S. (2016). Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging (Albany NY), 8(5), 899.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931843/
6. Zhu, B., Dong, Y., Xu, Z., Gompf, H. S., Ward, S. A., Xue, Z., ... & Xie, Z. (2012). Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiology of disease, 48(3), 348-355.https://www.sciencedirect.com/science/article/pii/S0969996112002379
7. Piirainen, S., Youssef, A., Song, C., Kalueff, A. V., Landreth, G. E., Malm, T., & Tian, L. (2017). Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience & Biobehavioral Reviews, 77, 148-164.https://www.sciencedirect.com/science/article/pii/S0149763416304857
11. Vauzour, D., Camprubi-Robles, M., Miquel-Kergoat, S., Andres-Lacueva, C., Bánáti, D., Barberger-Gateau, P., ... & Kiliaan, A. J. (2017). Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing research reviews, 35, 222-240.https://www.sciencedirect.com/science/article/pii/S1568163716301027
12. Vauzour, D., Camprubi-Robles, M., Miquel-Kergoat, S., Andres-Lacueva, C., Bánáti, D., Barberger-Gateau, P., ... & Kiliaan, A. J. (2017). Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing research reviews, 35, 222-240.https://www.sciencedirect.com/science/article/pii/S1568163716301027
13. Kang, E. B., Koo, J. H., Jang, Y. C., Yang, C. H., Lee, Y., Cosio‐Lima, L. M., & Cho, J. Y. (2016). Neuroprotective Effects of Endurance Exercise Against High‐Fat Diet‐Induced Hippocampal Neuroinflammation. Journal of neuroendocrinology, 28(5).https://onlinelibrary.wiley.com/doi/abs/10.1111/jne.12385
14. Moreno-Navarrete, J. M., Blasco, G., Puig, J., Biarnes, C., Rivero, M., Gich, J., ... & Garcia-Castro, F. (2017). Neuroinflammation in obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance. International Journal of Obesity, 41(11), 1627-1635.https://www.nature.com/articles/ijo2017162
15. Buric, I., Farias, M., Jong, J., Mee, C., & Brazil, I. A. (2017). What is the molecular signature of mind–body interventions? A systematic review of gene expression changes induced by meditation and related practices. Frontiers in Immunology, 8, 670.https://www.frontiersin.org/articles/10.3389/fimmu.2017.00670/full?source=post_page---------------------------
18. Valdearcos, M., Robblee, M. M., Benjamin, D. I., Nomura, D. K., Xu, A. W., & Koliwad, S. K. (2014). Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell reports, 9(6), 2124-2138.https://www.sciencedirect.com/science/article/pii/S2211124714009723
20. Peng, H., Nickell, C. R. G., Chen, K. Y., McClain, J. A., & Nixon, K. (2017). Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol, 62, 29-40. https://www.sciencedirect.com/science/article/pii/S0741832916306322
22. Yin, Z., Raj, D. D., Schaafsma, W., van der Heijden, R. A., Kooistra, S. M., Reijne, A. C., ... & Yi, C. X. (2018). Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Frontiers in molecular neuroscience, 11, 65.https://www.frontiersin.org/articles/10.3389/fnmol.2018.00065/full?_ga=2.22854206.449367120.1527552000-1350799375.1527552000
24. Piao, C. S., Stoica, B. A., Wu, J., Sabirzhanov, B., Zhao, Z., Cabatbat, R., ... & Faden, A. I. (2013). Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiology of disease, 54, 252-263.https://www.sciencedirect.com/science/article/pii/S0969996113000089
26. Jeong, E. A., Jeon, B. T., Shin, H. J., Kim, N., Lee, D. H., Kim, H. J., ... & Roh, G. S. (2011). Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Experimental neurology, 232(2), 195-202. https://www.sciencedirect.com/science/article/pii/S0014488611003086
28. Jeong, E. A., Jeon, B. T., Shin, H. J., Kim, N., Lee, D. H., Kim, H. J., ... & Roh, G. S. (2011). Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Experimental neurology, 232(2), 195-202.https://www.sciencedirect.com/science/article/pii/S0014488611003086
29. Vasconcelos, A. R., Yshii, L. M., Viel, T. A., Buck, H. S., Mattson, M. P., Scavone, C., & Kawamoto, E. M. (2014). Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. Journal of neuroinflammation, 11(1), 1-14.https://link.springer.com/article/10.1186/1742-2094-11-85?fbclid=IwAR3dip0J8Lc1jIQSvqAqg1z9oo9XUfBauoRAK0zUvEujKZgKonVgVEZ27F8&error=cookies_not_supported&code=f3ff3856-a534-4d20-b664-0b12d80f19c1
30. André, C., Guzman-Quevedo, O., Rey, C., Rémus-Borel, J., Clark, S., Castellanos-Jankiewicz, A., ... & Laye, S. (2017). Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes, 66(4), 908-919.https://diabetes.diabetesjournals.org/content/66/4/908.abstract
33. Spencer, S. J., D'Angelo, H., Soch, A., Watkins, L. R., Maier, S. F., & Barrientos, R. M. (2017). High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiology of aging, 58, 88-101.https://www.sciencedirect.com/science/article/pii/S0197458017302105
35. Olson, C. A., Vuong, H. E., Yano, J. M., Liang, Q. Y., Nusbaum, D. J., & Hsiao, E. Y. (2018). The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 173(7), 1728-1741.https://www.sciencedirect.com/science/article/pii/S0092867418305208
37. Catani, M. V., Gasperi, V., Bisogno, T., & Maccarrone, M. (2018). Essential dietary bioactive lipids in neuroinflammatory diseases. Antioxidants & redox signaling, 29(1), 37-60.
42. Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabilitation and neural repair, 29(6), 577-589.https://journals.sagepub.com/doi/abs/10.1177/1545968314562108
44. Gao, Y., Bielohuby, M., Fleming, T., Grabner, G. F., Foppen, E., Bernhard, W., ... & García-Cáceres, C. (2017). Dietary sugars, not lipids, drive hypothalamic inflammation. Molecular metabolism, 6(8), 897-908.https://www.sciencedirect.com/science/article/pii/S2212877817302399
46. Hao, S., Dey, A., Yu, X., & Stranahan, A. M. (2016). Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain, behavior, and immunity, 51, 230-239. https://www.sciencedirect.com/science/article/pii/S0889159115300076
48. White, K. A., Hutton, S. R., Weimer, J. M., & Sheridan, P. A. (2016). Diet-induced obesity prolongs neuroinflammation and recruits CCR2+ monocytes to the brain following herpes simplex virus (HSV)-1 latency in mice. Brain, behavior, and immunity, 57, 68-78.https://www.sciencedirect.com/science/article/pii/S0889159116301568
50. Matt, S. M., Allen, J. M., Lawson, M. A., Mailing, L. J., Woods, J. A., & Johnson, R. W. (2018). Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Frontiers in immunology, 9, 1832.https://www.frontiersin.org/articles/10.3389/fimmu.2018.01832/full?ref=mainstreem-dotcom
52. García-Cáceres, C., Quarta, C., Varela, L., Gao, Y., Gruber, T., Legutko, B., ... & Le Thuc, O. (2016). Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell, 166(4), 867-880.https://www.sciencedirect.com/science/article/pii/S0092867416309746
53. Vojdani, A., Kharrazian, D., & Mukherjee, P. S. (2014). The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients, 6(1), 15-36.https://www.mdpi.com/2072-6643/6/1/15/htm
Microglial pathophysiology and neutraceutical strategies
1. Milbury, P. E., & Kalt, W. (2010). Xenobiotic metabolism and berry flavonoid transport across the blood− brain barrier. Journal of Agricultural and Food Chemistry, 58(7), 3950-3956. https://pubs.acs.org/doi/abs/10.1021/jf903529m
3. Boontanrart, M., Hall, S. D., Spanier, J. A., Hayes, C. E., & Olson, J. K. (2016). Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. Journal of neuroimmunology, 292, 126-136. https://www.sciencedirect.com/science/article/pii/S0165572816300157
4. Unno, K., Pervin, M., Nakagawa, A., Iguchi, K., Hara, A., Takagaki, A., ... & Nakamura, Y. (2017). Blood–Brain Barrier Permeability of Green Tea Catechin Metabolites and their Neuritogenic Activity in Human Neuroblastoma SH‐SY5Y Cells. Molecular nutrition & food research, 61(12), 1700294.https://onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201700294
5. Monks, T. J., Ghersi-Egea, J. F., Philbert, M., Cooper, A. J., & Lock, E. A. (1999). Symposium overview: the role of glutathione in neuroprotection and neurotoxicity. Toxicological sciences: an official journal of the Society of Toxicology, 51(2), 161-177.https://academic.oup.com/toxsci/article-abstract/51/2/161/2256972
8. Rojo, A. I., McBean, G., Cindric, M., Egea, J., López, M. G., Rada, P., ... & Cuadrado, A. (2014). Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & redox signaling, 21(12), 1766-1801.https://www.liebertpub.com/doi/abs/10.1089/ars.2013.5745
9. Dajas, F., Abin-Carriquiry, J. A., Arredondo, F., Blasina, F., Echeverry, C., Martínez, M., ... & Vaamonde, L. (2015). Quercetin in brain diseases: Potential and limits. Neurochemistry international, 89, 140-148.https://www.sciencedirect.com/science/article/pii/S019701861530005X
12. Chen, Y., Yin, M., Cao, X., Hu, G., & Xiao, M. (2018). Pro-and anti-inflammatory effects of high cholesterol diet on aged brain. Aging and disease, 9(3), 374.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988593/
13. Yuan, T., Ma, H., Liu, W., Niesen, D. B., Shah, N., Crews, R., ... & Seeram, N. P. (2016). Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS chemical neuroscience, 7(1), 26-33.https://pubs.acs.org/doi/abs/10.1021/acschemneuro.5b00260
15. Almeida, S., Alves, M. G., Sousa, M., Oliveira, P. F., & Silva, B. M. (2016). Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration?. Neurotoxicity research, 30(3), 345-366. https://link.springer.com/article/10.1007/s12640-015-9590-4
16. Figueira, I., Menezes, R., Macedo, D., Costa, I., & Nunes dos Santos, C. (2017). Polyphenols beyond barriers: a glimpse into the brain. Current neuropharmacology, 15(4), 562-594.https://www.ingentaconnect.com/content/ben/cn/2017/00000015/00000004/art00011
18. Szwajgier, D., Borowiec, K., & Pustelniak, K. (2017). The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients, 9(5), 477.https://www.mdpi.com/2072-6643/9/5/477
19. Kurtys, E., Eisel, U. L., Verkuyl, J. M., Broersen, L. M., Dierckx, R. A., & de Vries, E. F. (2016). The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia. Neurochemistry international, 99, 206-214. https://www.sciencedirect.com/science/article/pii/S0197018616302273
21. Peña-Altamira, E., Petralla, S., Massenzio, F., Virgili, M., Bolognesi, M. L., & Monti, B. (2017). Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s disease. Frontiers in Aging Neuroscience, 9, 175.https://www.frontiersin.org/articles/10.3389/fnagi.2017.00175/full
25. Wu, Z., Yu, J., Zhu, A., & Nakanishi, H. (2016). Nutrients, microglia aging, and brain aging. Oxidative medicine and cellular longevity, 2016.https://www.hindawi.com/journals/omcl/2016/7498528/abs/
26. Venigalla, M., Sonego, S., Gyengesi, E., Sharman, M. J., & Münch, G. (2016). Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochemistry International, 95, 63-74.https://www.sciencedirect.com/science/article/pii/S0197018615300619
29. Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., & Guillemin, G. J. (2012). Neuroprotective effect of natural products against Alzheimer’s disease. Neurochemical research, 37(9), 1829-1842. https://link.springer.com/article/10.1007/s11064-012-0799-9
30. Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G., & Bishayee, A. (2017). Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. In Advances in protein chemistry and structural biology (Vol. 108, pp. 33-57). Academic Press.https://www.sciencedirect.com/science/article/pii/S1876162317300081
31. Van, A. L., Sakayori, N., Hachem, M., Belkouch, M., Picq, M., Lagarde, M., ... & Bernoud-Hubac, N. (2016). Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie, 130, 163-167.https://www.sciencedirect.com/science/article/pii/S0300908416301432
33. Lingam, I., & Robertson, N. J. (2018). Magnesium as a neuroprotective agent: a review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Developmental neuroscience, 40(1), 1-12.https://www.karger.com/Article/Abstract/484891
34. Lingam, I., & Robertson, N. J. (2018). Magnesium as a neuroprotective agent: a review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Developmental neuroscience, 40(1), 1-12.https://www.karger.com/Article/Abstract/484891
35. Xu, J., Wang, H., Ding, K., Zhang, L., Wang, C., Li, T., ... & Lu, X. (2014). Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2–ARE pathway. Free Radical Biology and Medicine, 71, 186-195.https://www.sciencedirect.com/science/article/pii/S0891584914001269
36. Costa, S. L., Silva, V. D. A., dos Santos Souza, C., Santos, C. C., Paris, I., Muñoz, P., & Segura-Aguilar, J. (2016). Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotoxicity research, 30(1), 41-52.https://link.springer.com/article/10.1007/s12640-016-9600-1
37. Frolinger, T., Sims, S., Smith, C., Wang, J., Cheng, H., Faith, J., ... & Pasinetti, G. M. (2019). The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Scientific reports, 9(1), 1-10.https://www.nature.com/articles/s41598-019-39994-6
41. Sun, G. Y., Simonyi, A., Fritsche, K. L., Chuang, D. Y., Hannink, M., Gu, Z., ... & Beversdorf, D. Q. (2018). Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins, Leukotrienes and Essential Fatty Acids, 136, 3-13.https://www.sciencedirect.com/science/article/pii/S0952327816302137
42. Tegenge, M. A., Rajbhandari, L., Shrestha, S., Mithal, A., Hosmane, S., & Venkatesan, A. (2014). Curcumin protects axons from degeneration in the setting of local neuroinflammation. Experimental neurology, 253, 102-110.https://www.sciencedirect.com/science/article/pii/S0014488613003828
44. Chuang, D. Y., Simonyi, A., Cui, J., Lubahn, D. B., Gu, Z., & Sun, G. Y. (2016). Botanical polyphenols mitigate microglial activation and microglia-induced neurotoxicity: role of cytosolic phospholipase A 2. Neuromolecular medicine, 18(3), 415-425.https://link.springer.com/article/10.1007/s12017-016-8419-5
46. Shal, B., Ding, W., Ali, H., Kim, Y. S., & Khan, S. (2018). Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer's disease. Frontiers in pharmacology, 9, 548.https://www.frontiersin.org/articles/10.3389/fphar.2018.00548/full
Neuroinflammation blood brain barrier permeability and clinical applications
1. Hou, J., Baker, L. A., Zhou, L., & Klein, R. S. (2016). Viral interactions with the blood-brain barrier: old dog, new tricks. Tissue barriers, 4(1), e1142492.https://www.tandfonline.com/doi/abs/10.1080/21688370.2016.1142492
3. Szakall, S., Boros, I., Balkay, L., Emri, M., Fekete, I., Kerenyi, L., ... & Galuska, L. (1998). Cerebral effects of a single dose of intravenous vinpocetine in chronic stroke patients: a PET study. Journal of neuroimaging, 8(4), 197-204. https://onlinelibrary.wiley.com/doi/abs/10.1111/jon199884197
5. Mohammed, H. O., Starkey, S. R., Stipetic, K., Divers, T. J., Summers, B. A., & de Lahunta, A. (2008). The role of dietary antioxidant insufficiency on the permeability of the blood-brain barrier. Journal of Neuropathology & Experimental Neurology, 67(12), 1187-1193. https://academic.oup.com/jnen/article-abstract/67/12/1187/2916972
7. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of disease, 37(1), 13-25.https://www.sciencedirect.com/science/article/pii/S0969996109002083
10. Zhao, H. F., Li, N., Wang, Q., Cheng, X. J., Li, X. M., & Liu, T. T. (2015). Resveratrol decreases the insoluble Aβ1–42 level in hippocampus and protects the integrity of the blood–brain barrier in AD rats. Neuroscience, 310, 641-649.https://www.sciencedirect.com/science/article/pii/S0306452215009136
14. Lochhead, J. J., McCaffrey, G., Quigley, C. E., Finch, J., DeMarco, K. M., Nametz, N., & Davis, T. P. (2010). Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia–reoxygenation. Journal of Cerebral Blood Flow & Metabolism, 30(9), 1625-1636. https://journals.sagepub.com/doi/abs/10.1038/jcbfm.2010.29
15. Enciu, A. M., Gherghiceanu, M., & Popescu, B. O. (2013). Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxidative medicine and cellular longevity, 2013.https://www.hindawi.com/journals/omcl/2013/297512/abs/
18. Kempuraj, D., Mentor, S., Thangavel, R., Ahmed, M. E., Selvakumar, G. P., Raikwar, S. P., ... & Zaheer, A. (2019). Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Frontiers in cellular neuroscience, 13, 54.https://www.frontiersin.org/articles/10.3389/fncel.2019.00054/full
19. Won, S. M., Lee, J. H., Park, U. J., Gwag, J., Gwag, B. J., & Lee, Y. B. (2011). Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Experimental & molecular medicine, 43(2), 121-128.https://www.nature.com/articles/emm201115
21. Lochhead, J. J., Ronaldson, P. T., & Davis, T. P. (2017). Hypoxic stress and inflammatory pain disrupt blood-brain barrier tight junctions: implications for drug delivery to the central nervous system. The AAPS journal, 19(4), 910-920.https://link.springer.com/article/10.1208/s12248-017-0076-6
23. Amourette, C., Lamproglou, I., Barbier, L., Fauquette, W., Zoppe, A., Viret, R., & Diserbo, M. (2009). Gulf War illness: Effects of repeated stress and pyridostigmine treatment on blood–brain barrier permeability and cholinesterase activity in rat brain. Behavioural brain research, 203(2), 207-214. https://www.sciencedirect.com/science/article/pii/S0166432809002885
27. Lebda, M. A., Sadek, K. M., Tohamy, H. G., Abouzed, T. K., Shukry, M., Umezawa, M., & El-Sayed, Y. S. (2018). Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life sciences, 212, 251-260. https://www.sciencedirect.com/science/article/pii/S0024320518306283
30. Della Giustina, A., Goldim, M. P., Danielski, L. G., Florentino, D., Garbossa, L., Joaquim, L., ... & da Rosa, N. (2020). Fish oil–rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition, 70, 110417.https://www.sciencedirect.com/science/article/pii/S0899900718309444
31. Almutairi, M. M., Gong, C., Xu, Y. G., Chang, Y., & Shi, H. (2016). Factors controlling permeability of the blood–brain barrier. Cellular and molecular life sciences, 73(1), 57-77. https://link.springer.com/content/pdf/10.1007/s00018-015-2050-8.pdf
32. Elwood, E., Lim, Z., Naveed, H., & Galea, I. (2017). The effect of systemic inflammation on human brain barrier function. Brain, behavior, and immunity, 62, 35-40.https://www.sciencedirect.com/science/article/pii/S0889159116304883
37. Kuhlmann, C. R., Librizzi, L., Closhen, D., Pflanzner, T., Lessmann, V., Pietrzik, C. U., ... & Luhmann, H. J. (2009). Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke, 40(4), 1458.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.553.5906&rep=rep1&type=pdf
44. Risau, W., Dingler, A., Albrecht, U., Dehouck, M. P., & Cecchelli, R. (1992). Blood–Brain Barrier Pericytes Are the Main Source of γ‐Glutamyltranspeptidase Activity in Brain Capillaries. Journal of neurochemistry, 58(2), 667-672.https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.1992.tb09769.x
48. Rhea, E. M., Salameh, T. S., Logsdon, A. F., Hanson, A. J., Erickson, M. A., & Banks, W. A. (2017). Blood-brain barriers in obesity. The AAPS journal, 19(4), 921-930.https://link.springer.com/article/10.1208/s12248-017-0079-3
49. Alluri, H., Wiggins-Dohlvik, K., Davis, M. L., Huang, J. H., & Tharakan, B. (2015). Blood–brain barrier dysfunction following traumatic brain injury. Metabolic brain disease, 30(5), 1093-1104.https://link.springer.com/article/10.1007/s11011-015-9651-7
50. Jiang, X., Andjelkovic, A. V., Zhu, L., Yang, T., Bennett, M. V., Chen, J., ... & Shi, Y. (2018). Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in neurobiology, 163, 144-171.https://www.sciencedirect.com/science/article/pii/S0301008216301733
51. Takechi, R., Lam, V., Brook, E., Giles, C., Fimognari, N., Mooranian, A., ... & Mamo, J. C. (2017). Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: an implication for causal link. Frontiers in aging neuroscience, 9, 399.https://www.frontiersin.org/articles/10.3389/fnagi.2017.00399/full
53. Della Giustina, A., Goldim, M. P., Danielski, L. G., Florentino, D., Mathias, K., Garbossa, L., ... & Laurentino, A. O. M. (2017). Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochemistry international, 108, 436-447.https://www.sciencedirect.com/science/article/pii/S0197018617301213
Evaluation of neuroinflammation in a clinical setting
1. Raz, N., Yang, Y., Dahle, C. L., & Land, S. (2012). Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(3), 361-369.https://www.sciencedirect.com/science/article/pii/S092544391100189X
COVID REFERENCES
Wetenschappelijke Referenties Laser en revalidatie van COVID-19-patiënten
https://drive.google.com/drive/folders/1Q0XiYiiVTpzUPhbPCUPPFEToaEi_Hh59?usp=sharin
g
https://www.hindawi.com/journals/rerp/2021/6626932/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194064/
https://www.prnewswire.com/news-releases/covid-19-pneumonia-patient-shows-significant-i mprovements-following-laser-treatment-at-massachusetts-hospital-301108558.html